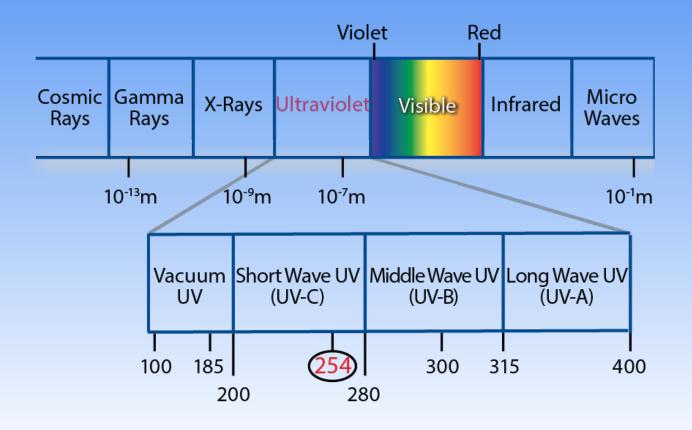


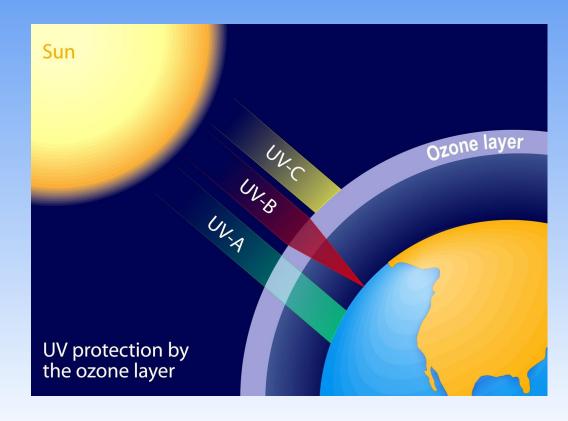
COPYRIGHT MATERIALS:

This educational activity is protected by U.S. and International copyright laws. Reproduction, distribution, display and use of the educational activity without written permission of the presenter is prohibited.

© UV Resources 2020

WHAT WE'LL REVIEW:


- ▶ Basics of Germicidal UV-C
- ► Infectious Diseases
 - Inactivating Airborne Pathogens
- Applications
 - Airstream Disinfection / In-duct "On the Fly"
 - Upper-Air / Room Disinfection
 - HVAC Coil / Surface Cleaning
 - American Society of Heating & Air-Conditioning Engineers (ASHRAE) Position
- ► Review / Questions



BASICS OF GERMICIDAL UV-C

ELECTROMAGNETIC SPECTRUM

ELECTROMAGNETIC SPECTRUM

UV-A long-wave

Responsible for skin tanning & wrinkles

UV-B medium-wave;

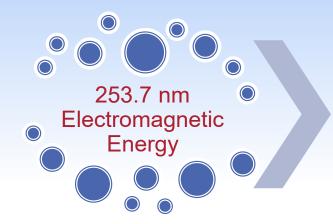
Primarily responsible for skin reddening and skin cancer

UV-C short-wave;

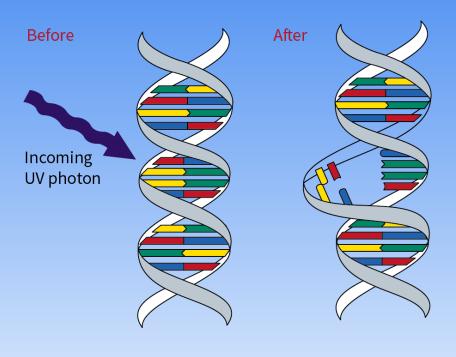
Most effective Germicidal control

280-200 nm

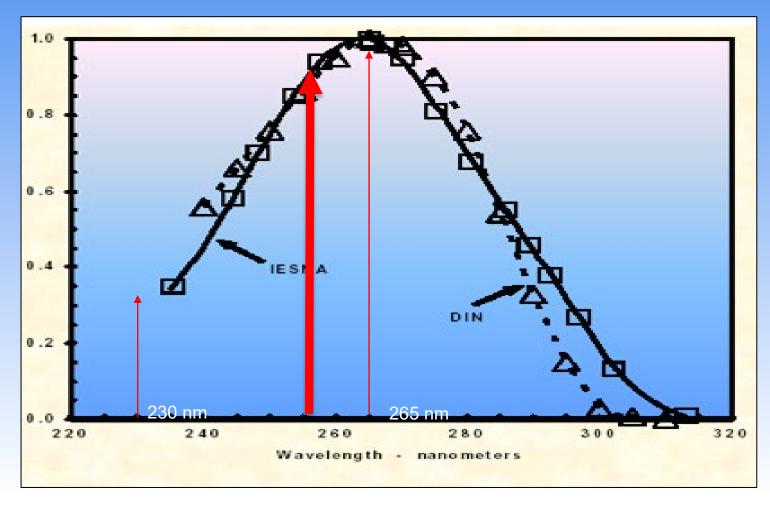
Vacuum UV


Can produce ozone (O3) in air

200-100 nm


253.7 NM WAVELENGTH

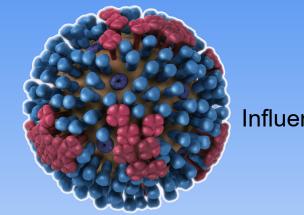
- ► Inactivates virtually all microbes
 - Damages nucleic acid & proteinsincapable of reproducing
 - Forms thymine dimer lesions in DNA
- ► Pathogens absorb UV-C at different rates (called rate constant "K")


Breaks Through Cell Wall Permanently Damages DNA

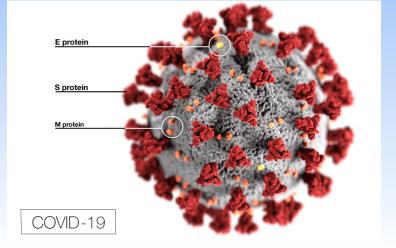
Cells Can No Longer Reproduce

HOW DNA RESPONDS TO UV ENERGY

Low pressure mercury vapor lamps generate their energy at 253.7nm


^{*} SOURCE: DNA response to the electromagnetic wavelength; Illuminating Engineering Society of North America (IESNA)

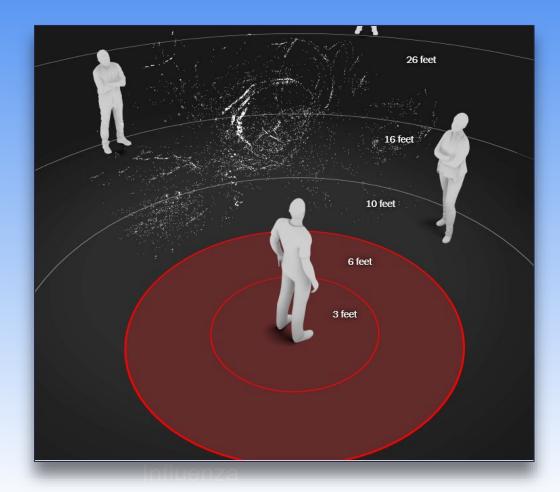
INFECTIOUS DISEASES


VIRUS SIZE*

- ► Coronavirus size
 - 0.06 to 0.15 microns (0.11 mean)
- ► Influenza
 - 0.08 to 0.12 microns (0.10 mean)
- ► SARS
 - 0.08 to 0.15 microns (0.11 mean)

Influenza †

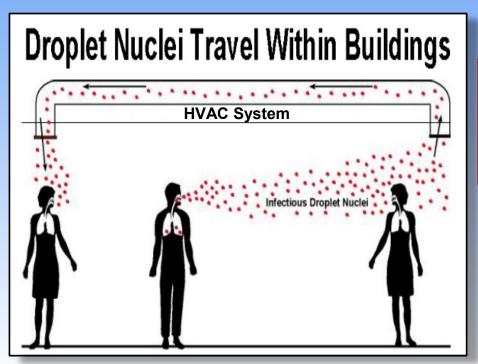
Coronavirus †



^{*} Kowalski, Wladyslaw. (2009). Ultraviolet Germicidal Irradiation Handbook. 10.1007/978-3-642-01999-9_10. https://link.springer.com/book/10.1007/978-3-642-01999-9 † Images courtesy CDC: https://www.cdc.gov/media/subtopic/images.htm

VIRUS TRANSMISSION

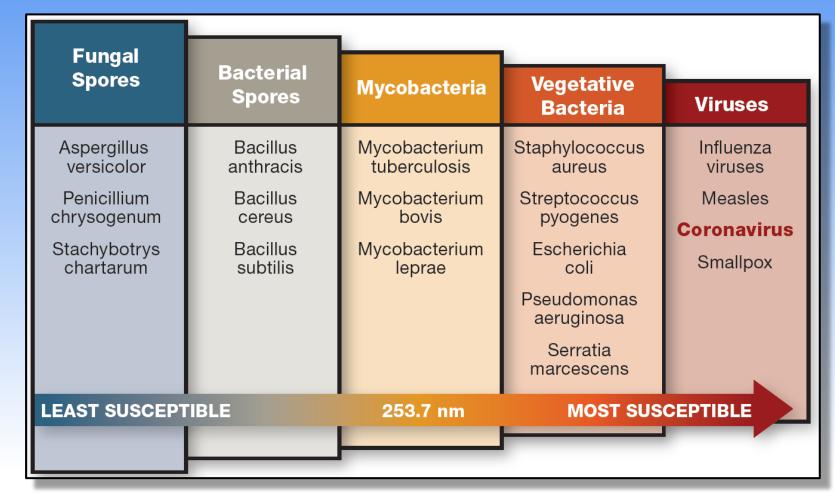
- ► M.I.T. Researchers observed particles from a cough traveling as far as 16 ft and those from a sneeze up to 26 ft*
- ► Can stay airborne from 8 to 14 minutes[†]


^{*} The New York Times, 4/14/20 https://www.nytimes.com/interactive/2020/04/14/science/coronavirus-transmission-cough-6-feet-ar-ul.htm

[†] The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission https://www.pnas.org/content/early/2020/05/12/2006874117

BUILDING HVAC SYSTEMS

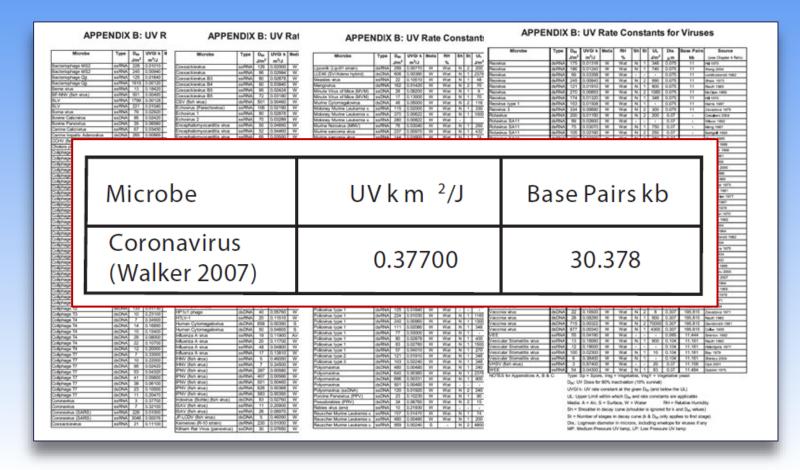
▶ In an office, every 7.5 to 10 minutes the air is recirculated through the HVAC System



	Typical Air Changes Per I	Hour Table				
П	Residential					
П	Basements	3-4				
	Bedrooms	5-6				
	Bathrooms	6-7				
	Family Living Rooms	6-8				
	Kitchens	7-8				
_	Laundry	R-0				
Light Commercial						
	Offices					
	Business Offices	6-8				
	Lunch Break Rooms	7-8				
	Conference Rooms	8-12				
1	Medical Procedure Offices	9-10				
	Copy Rooms	10-12				
	Main Computer Rooms	10-14				
	Smoking Area	13-15				
	nestaurants					
	Dining Area	8-10				
_	Food Staging	10-12				
	Kitchens	14-18				
\perp	Bars	15-20				
\perp	Public Buildings					
	Hallways	6-8				
_	Retail Stores	6-10				
	Foyers	8-10				
	Churches	8-12				
	Restrooms	10-12				
	Auditoriums	12-14				
	Smoking Rooms	15-20				

https://www.slideshare.net/anjumhashmi61/h1-n1-influenza-virus-its-transmission-indoor-air-role-hvac https://www.contractingbusiness.com/service/article/20868246/use-the-air-changes-calculation-to-determine-room-cfm

PATHOGEN SUSCEPTIBILITY TO UV-C


Viruses like influenza, measles, SARS and coronavirus tend to be more susceptible to UV-C inactivation in an airstream.

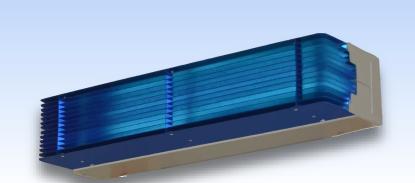
DATA SOURCE: ASHRAE 2019 Handbook-HVAC Applications Ch. 62

PATHOGEN SUSCEPTIBILITY TO UV-C

Over 550microbes havebeen tested overthe last 75 years

^{*}Kowalski, Wladyslaw. (2009). Ultraviolet Germicidal Irradiation Handbook. 10.1007/978-3-642-01999-9_10. https://link.springer.com/book/10.1007/978-3-642-01999-9

UV-C APPLICATIONS


UV-C APPLICATIONS

► Three primary means of applying UV-C for air and HVAC surface protection against infectious agents: Airstream Upper Coil/Surface Cleaning

HVAC Airstream Disinfection

Upper-Air/Room

HVAC Coil/Surface Cleaning

Airstream Disinfection

Upper Air/Room

Coil/Surface Cleaning

1 Dimensions of duct and exposure time

$$E_{t} = \frac{VOL}{Q} = \frac{WHL}{Q}$$

2 UVGI removal rate

$$RR = 1 - e^{-kI_m E_t}$$

Rate constant (K or Z value)

	_		
Microbe	UV k m²/J	Base Pairs kb	
Coronavirus (Walker 2007)	→ 0.37700	30.378	

Exposure time

Vol = volume of UV chamber, m³

 $Q = airflow, m^3/s$

W = width, m

H = height, m

L = length, m

Removal rate

RR = removal rate, fraction or %

e = efficiency (desired removal rate)

 $k = UV \text{ rate constant, } m^2/J$

 $I_m = mean irradiance, W/m^2$

 $E_t =$ exposure time in seconds

Data Source: Kowalski, Wladyslaw. (2009). Ultraviolet Germicidal Irradiation Handbook.

Airstream Disinfection

Upper Air/Room

Coil/Surface Cleaning

Variables that Impact Airstream Disinfection Efficiency

UV-C Rate Constant for Specific Pathogen

UV-C Susceptibility


UV-C Residence Time/Intensity

- Airflow (fpm)
- · Air Temp & RH
- Exposure time
- Dimensions (H,W,D)
- Duct Reflectivity
- Lamp Output (end of life)

- Disinfect moving airstreams "on-the-fly" to inactivate microorganisms
- ► Pathogens absorb UV-C energy at different rates (a.k.a. rate constant)
- ► Uniform 360° distribution provides best air treatment effectiveness*
- ► Match UV-C dose to target pathogen

Upper Air/Room Coil/Surface Cleaning

^{* 2019} ASHRAE Applications Handbook, 62

Airstream Disinfection

Upper Air/Room Coil/Surface Cleaning

ASHRAE Position Document on Airborne Infectious Diseases

Approved by ASHRAE Board of Directors January 19, 2014

Reaffirmed by Technology Council February 5, 2020

Expires August 5, 2020

ASHRAE Position Document on Infectious Aerosols

> Approved by ASHRAE Board of Directors April 14, 2020

> > Expires April 14, 2023

https://www.ashrae.org/about/position-documents

Table 1 Airborne Infectious Disease Engineering Control Strategies: Occupancy Interventions and Their Priority for Application and Research

Strategy	Occupancy Categories Applicable for Consideration*	Application Priority	Research Priority
Dilution ventilation	All	High	Medium
Temperature and humidity	All except 7 and 11	Medium	High
Personalized ventilation	1, 4, 6, 9, 10, 14	Medium	High
Local exhaust	1, 2, 8, 14	Medium	Medium
Central system filtration	All	High	High
Local air filtration	1, 4, 6, 7, 8 10	Medium	High
Upper-room UVGI	1, 2, 3, 5, 6, 8, 9, 14	High	Highest
Duct and air-handler UVGI	1, 2, 3, 4, 5, 6, 8, 9, 14	Medium	Highest
In-room flow regimes	1, 6, 8, 9, 10, 14	High	High
Differential pressurization	1, 2, 7, 8 11, 14	High	High

 $\textit{Note:} \ In \ practical \ application, a \ combination \ of the \ individual \ interventions \ will \ be \ more \ effective \ than \ any \ single \ one \ in \ isolation.$

Airstream Disinfection

Upper Air/Room

Coil/Surface Cleaning

*Occupancy Categories:

- 1. Health care (residential and outpatient)
- 2. Correctional facilities
- 3. Educational < age 8
- 4. Educational > age 8
- 5. Food and beverage
- 6. Internet café/game rooms
- 7. Hotel, motel, dormitory
- 8. Residential shelters
- 9. Public assembly and waiting
- 10. Transportation conveyances
- 11. Residential multifamily
- 12. Retail
- 13. Sports
- 14. Laboratories where infectious diseases vectors are handled

- ► UVGI inactivates microbes by damaging the structure of nucleic acids & proteins
- Effectiveness depends on UV dose and microbe's susceptibility to UV-C
- ► CDC has approved UVGI as adjunct to filtration for reduction of Tuberculosis risk
- ➤ While UVGI is well researched and validated, many new technologies are not*

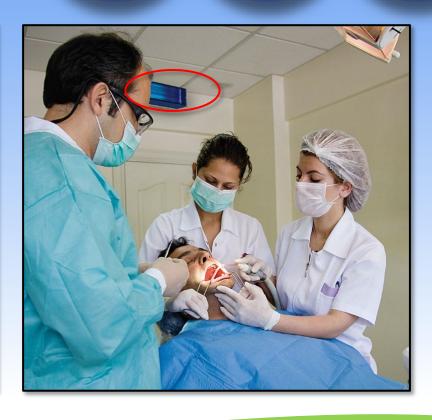
Upper Air/Room Coil/Surface Cleaning

*ASHRAE-Position document on infectious aerosols, April 2020

- ► Wall-mounted >7ft; inactivates airborne microbes in seconds
- Non-reflective baffles create collimated UV-C beam
- ► Natural air currents lift contaminated air into disinfection zone and inactivates pathogen
- ► Safe for occupied spaces

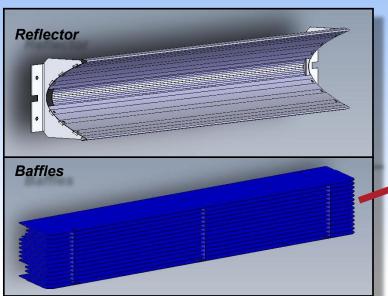


SAFE FOR OCCUPIED ROOM


Airstream Disinfection

Upper Air/Room

Coil/Surface Cleaning



- ► Inactivate microbes and reduces disease transmission
- ► Inactivation ratios up to 99%+ have been modeled
- ► Collimated UV-C "band"
- Non-reflective baffles ensure occupant safety

► Mycobacterium Tuberculosis (M.tb)

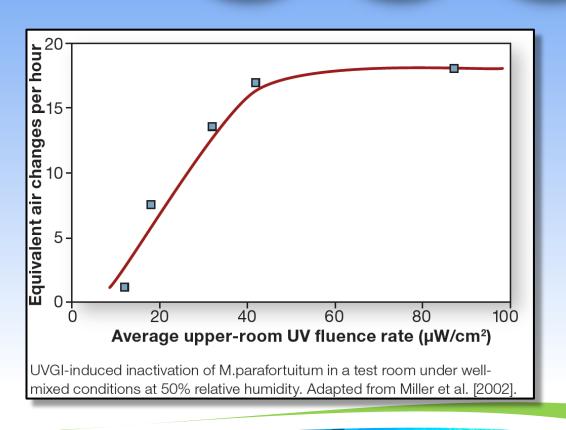
1.8B people are infected - one quarter of the world's population*

- Resulting in 1.5M TB deaths/year
- Most vulnerable are women, children, and those with HIV/AIDS
- TB and coronavirus have similar inactivation rates
- ► Pandemic Influenza
- ▶ Measles

* www.tballiance.org/why-new-tb-drugs/global-pandemic

Airstream Disinfection

Upper Air/Room


Coil/Surface Cleaning

- Hospital Isolation & Procedure Rooms
 - (Supplemental Controls)
- ► When Air Changes per Hour (ACH) with ventilation Outside Air (OSA) can't be obtained

Airstream Disinfection

Upper Air/Room

Coil/Surface Cleaning

COIL-SURFACE CLEANING

COIL-SURFACE CLEANING

► Restoration and preservation of heat transfer efficiency & airflow capacity (1990s)

- Improves indoor air quality (IAQ) and reduces airborne pathogens
- ➤ Slash HVAC energy consumption by up to 25%
- ▶ Reduce coil fouling and system maintenance

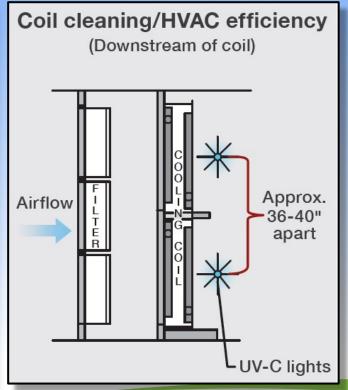
Airstream Disinfection

Upper Air/Room

Coil/Surface Cleaning

Duct/Plenum Surface	UV-C Multiplier
Stainless Steel	1.40
Galvanized Steel	1.50
Aluminum	1.75

Use of reflective materials can increase germicidal UV disinfection dosage/fluence



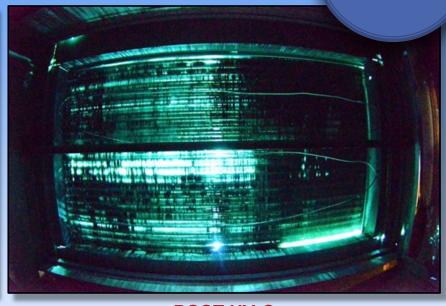
COIL-SURFACE CLEANING

Airstream
Disinfection
Upper
Air/Room
Coil/Surface
Cleaning

ASHRAE RP-1738

- ► This study measured change in coil performance after treatment with UVGI and UVGI benefits including:
 - first cost
 - energy cost
 - maintenance cost
 - collateral health benefits



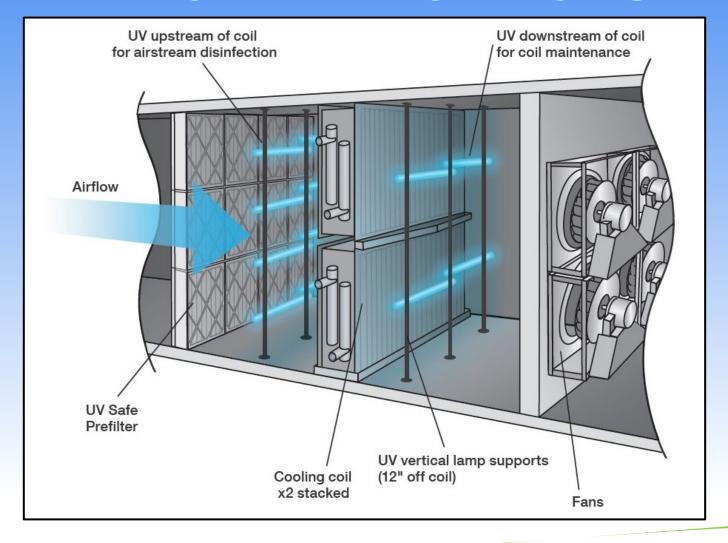

ASHRAE RP-1738 - TAMPA

Airstream Disinfection

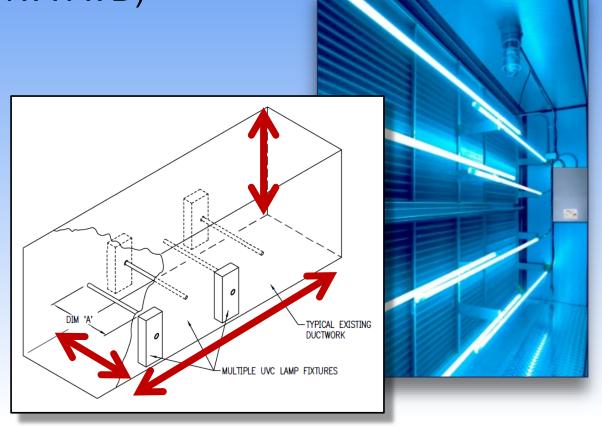
Upper Air/Room

Coil/Surface Cleaning

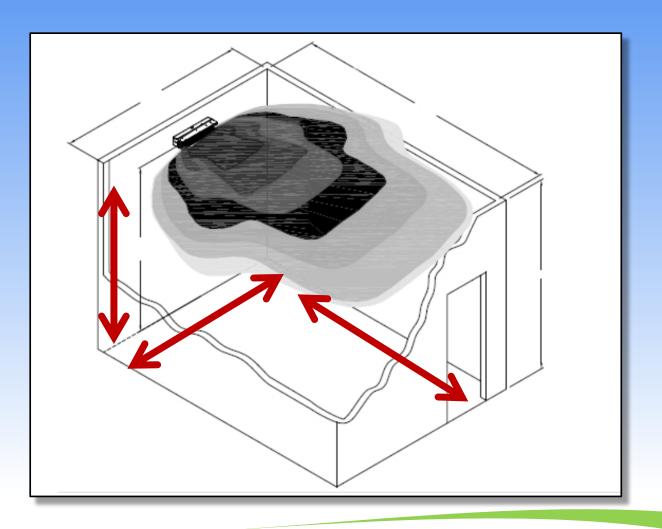
PRE UV-C POST UV-C


- ▶ 21% decrease in mean coil airside pressure drop
- ► 14% increase in mean overall heat transfer coefficient (UA)

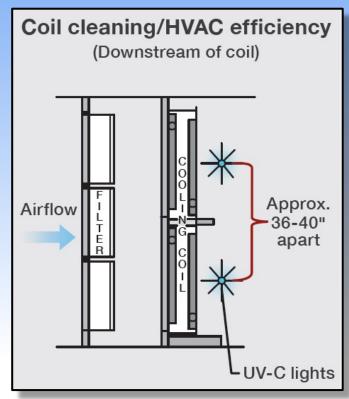
REVIEW


UV LAMP PLACEMENT OPTIONS

SIZING AN AIRSTREAM DISINFECTION SYSTEM


- ▶ Duct or Plenum Dimension (H x W x D)
- ▶ Target Microorganism
- ► Plenum Construction
- ► Airflow (FPM)
- ► Temperature

SIZING AN UPPER-ROOM/AIR SYSTEM


- ► Room dimensions
 - Ceiling Height
 - Width
 - Depth

SIZING A COIL CLEANING SYSTEM

- Plenum dimensions (downstream side of cooling coil)
 - Height
 - Width

SUMMARY

- UV-C proven
 - 80+ years of Upper Room (1940s)
 - 30+ years of proven "in-duct" applications
- ► ASHRAE recognized
 - 2 Handbook Chapters (Applications and Systems and Equipment)
 - 2 Test Standards (ANSI/ ASHRAE 185.1 and 185.2)
 - 3 Position Documents (Airborne Infectious Diseases; Infectious Aerosols; Filtration & Air Cleaning)
- Extensively peer reviewed
- ➤ Other "disinfection" technologies are not well researched and validated (ASHRAE 2020)

QUESTIONS?

The Leader in UV-C Disinfection & HVAC Efficiency

Email: info@UVResources.com

REFERENCES

- 1. (ASHRAE 2014). ASHRAE Document on Infectious Airborne Diseases Document Committee. **ASHRAE Position Document on Infectious Airborne Diseases**. https://www.ashrae.org/file%20library/about/position%20documents/airborne-infectious-diseases.pdf
- 2. (ASHRAE 2015). ASHRAE Filtration and Air Cleaning Position Document Committee. 2015. **ASHRAE Position Document on Filtration and Air Cleaning**. ASHRAE: 10. https://www.ashrae.org/file%20library/about/position%20documents/filtration-and-air-cleaning-pd.pdf
- 3. (ASHRAE 2017) **ASHRAE Handbook Fundamentals**. https://www.ashrae.org/technical-resources/ashrae-handbook/description-2017-ashrae-handbook-fundamentals
- 4. (ASHRAE 2019) **ASHRAE Handbook -HVAC Applications**. https://www.ashrae.org/technical-resources/ashrae-handbook/description-2019-ashrae-handbook-hvac-applications
- 5. (ASHRAE 2020). ASHRAE Document on Infectious Aerosols Position Document Committee. **ASHRAE Position Document on Infectious Aerosols** https://www.ashrae.org/file%20library/about/position%20documents/pd_infectiousaerosols_2020.pdf
- 6. Fencl, F., **Rightsizing UV-C Lamps for HVAC Applications**, 2013, HPAC Engineering. https://www.hpac.com/air-conditioning/article/20927323/rightsizing-uvc-lamps-for-hvac-applications.

REFERENCES

- 7. Kowalski, W. (2009). **Ultraviolet Germicidal Irradiation Handbook**. 10.1007/978-3-642-01999-9_10. https://www.researchgate.net/publication/285797673 Ultraviolet Germicidal Irradiation Handbook
- 8. Kowalski, W., Bahnfleth, W., & Hernandez, M. (2009). **A Genomic Model for Predicting the Ultraviolet Susceptibility of Viruses and Bacteria.** www.iuvanews.com/stories/pdf/archives/110201KowalskiEtAl_Article.pdf
- 9. Sehulster LM, Chinn RYW, Arduino MJ, Carpenter J, Donlan R, Ashford D, Besser R, Fields B, McNeil MM, Whitney C, Wong S, Juranek D, Cleveland J. **Guidelines for environmental infection control in health-care facilities**. Recommendations from CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). Chicago IL; American Society for Healthcare Engineering/American Hospital Association; 2004. https://www.cdc.gov/infectioncontrol/guidelines/environmental/index.html
- 10. Walker, C. & Gwangpyo, K. (2007). **Effect of Ultraviolet Germicidal Irradiation on Viral Aerosols**. Environmental science & technology. 41. 5460-5. 10.1021/es070056u. https://pubs.acs.org/doi/pdf/10.1021/es070056u?rand=lcmk5qhp

