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The US Northeast has reduced energy-related carbon emissions by 21%
since 1990; significant reductions from heat and transport to reach net zero

US Northeast energy-related CO, emissions?! and change by sector (million metric tons CO,)
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National Grid 1 Includes only emissions from fossil fuel combustion in the energy sector, which account for ~85% of economy-wide emissions, i.e. excludes
agriculture, land use. Sources: US DOE Energy Information Administration.




There are three main sources of energy-related GHG emissions in

the Northeast

National Grid

Electric power generation

Electricity generating plants, mostly large-scale gas-
fired units. Limited coal- and oil-based plants
remain

Transport

Mainly light-duty (passenger) cars and trucks, and
medium- and heavy-duty vehicles; aviation and

shipping

Heat (buildings and industry)

Space heating services in residential and
commercial buildings, and process heat in industrial
settings



National Grid’s Northeast Decarbonization Pathway
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Elements of the National Grid Northeast Decarbonization Pathway

40% x 2030 80% x 2050

67% zero-carbon electricity supply,
supported by a large increase in
renewables (vs. 45% in 2017)

>10 million light-duty (passenger) electric
vehicles on roads (vs. <75k in 2017)

2x rate of energy efficiency retrofits
3x rate of oil-to-gas heating conversions

10x scale up of oil-to-electric heating
conversions

100% zero-carbon electricity supply, utilizing:

- Large-scale renewables

- Zero-carbon “firm” capacity, e.g. hydro,
nuclear, gas with carbon capture and
storage and interconnections (Quebec)

- Inter-seasonal energy storage

>20 million light-duty (passenger) vehicles
(100% of the fleet)

Low-carbon technology use in medium and
heavy duty vehicles (electric or natural gas)

Efficiency improvement in aviation, shipping

Deepen energy efficiency investment,
especially in home insulation

Decarbonize natural gas supply for heating,
e.g. biomethane, hydrogen blending

Use hybrid natural gas / electric heating



The Northeast climate warrants tailored heat solutions

Heat demand in Boston exceeds 1,218
that of San Francisco by 178%
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California heat decarbonization
policy will not be our template for
Northeast 745
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The Northeast will need to develop
its own policy and technical HDD
approach to heat decarbonization.
San London  Edinburgh NYC Boston Buffalo
Francisco

January Heating Degree Days

Fahrenheit-based 5-year-average (2013 to 2017) heating degree days for January (base 65F).
Source:www.degreedays.net (using temperature data from www.wunderground.com)
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The UK is leading the way in rigorous analysis of heat decarbonization

elementenergy £ E4tech

Since 2012, the UK government has
commissioned a sustained analytical Impertal ol
program around low-carbon heat.
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Analysis of Alternative UK Heat

Major studies in 2018 (commissioned by Decarbonisation Pathways

the Committee on Climate Change and

the National Infrastructure Commission)
tested total system costs of full

electrification vs. hybrid vs. hydrogen Convalcasesrange ___ (roraigas . S T r
pathways Building EE 500 E

For the Committee on Climate Change

August 2018
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Full system costing study [UK]: all pathways more expensive than status quo however heating cost

seen to decline as % GDP regardless; lowest cost pathway uncertain as of yet

Cost comparison of different prospective UK heat solutions
£B, cumulative discounted system costs to 2050

Status Quo. ADDITIONAL / REDUCED costs v. status quo

H,

+ | T
Building EE 500 1

B Building heating system 400 -

Bl 7&.D electricity 300 A

Bl Production electricity 200 A | ﬁ
T&D Hydrogen, CCS 100 A U -

B Production Hydrogen 0 _._

Il Production Bioenergy 100 -

Il 7D Natural Gas

-200 A
Il Production Fossil Fuel

300 Status Quo | Heat pumps Direct electric  Hybrid HP Hydrogen HP + Hybrid HP + H2 + H2 + H2 +
(HP) biomass bio in grid + direct electric off grid storage +
DE off-grid biomass biomass
Heat as % GDP! (1.2% in 2015) 0.9% 0.9% 0.8% 0.9%
Annual GHG emissions in 2050 (MtCO2e)* ~100 5-10 10-15 20-25 20-25 5-10 10-15 10-15 10-15 0-(5)
Major EE retrofit requirement X X X
uncertainty HP / electric heater unit cost X X X X X
drivers Grid reinforcement cost X X X
Fuel cost: electricity X
In-building retrofit cost X X X X
Production: hydrogen X X X X
CCS:; H, safety & consumer? X X X X

[ CUNQHTQQ @LSG&Q)SO as % of GDP to 2050, NOT DISCOUNTED; [2] includes not just cost uncertainties but also readiness uncertainties; [3] central case assumes consumer

behaviour supports a diversity factor of 2.4 v. Worst case assumes diversity factor of 1. [4] does not factor indirect GHG emissions e.g., upstream methane leaks, flaring, venting

SOURCES: Element Energy & E4tech for UK National Infrastructure Commission (2018)
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Appendix B: Full system costing [UK] — study #2 — second study similarly concludes that given 8
current uncertainties, the lowest cost pathway is not clear yet

Cost comparison of different prospective UK heat solutions
£B / year; annual system costs in 2050

Core scenarios Testing inclusion of non-core elements
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Major H, import; ATR capture rate X X
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drivers? Flexibility of power systems X X X
Fuel prices X
Heating appliance cost X X X X X X

SOURCES: Imperial College of London for UK Committee on Climate Change(2018); [1] uncertainties for 10MtCO2e cases drawn from 30Mt cases in paper given close; uncertainty ranges
excludR]gatigiriaalioGef glscount rate (impact roughly equal across scenarios), CO2e target (factored into each scenario), heating demand (roughly equal impact across scenarios) 8
proximity of overall costs for the two cases; only references the more significant drivers of uncertainty in the paper



Solving for peak: pre-heating and thermal storage can help reduce peaks, especially
within day (example)

Flexibility provided by thermal storage and preheating (example over two days)

Reduction of peak heat Reduction of peak heat
demand by preheating demand by around 150 GW
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SOURCES: Imperial College of London for UK Committee on Climate Change(2018)



Solving for peak: [1] hybrids leverage low utilisation gas boiler; [2] hydrogen pathway requires
sufficient stored H, as well as H, production to supply boilers in homes during peak

Heat demand met by heating system in 2050 in the Core scenarios
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Il \G Boiler

B H2 Boiler

Il District CHP
B District HP
B Resistive Heat
M HP

Elec [10] Elec [0] Hybrid HP [10] Hybrid HP[0] | H2 (ATR)[10]  H2 (Elec.) [0]

[1INeatiorraln@reabose to operate the hybrid system in such a way that maximises use of the heat pump (e.g., with pre-heating) and minimised use of the gas boiler; there is
also a risk they will too frequently use the boiler (e.g., to heat faster when they haven’t done sufficient pre-heating).
SOURCES: Imperial College of London for UK Committee on Climate Change(2018)
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Solving for peak: in electrification with heat pumps pathway we require peaking plants (H, or CH,) to
serve the peak electricity demand, should renewable output be low during peak

Under electrification scenarios in 2050, example electricity load & generation profiles over 1-week, wind not blowing for 3 days
GW

nuclear NOT part of the generation fleet, higher wind & solar

nuclear as part of the generation fleet
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Solving for peak: in electrification with heat pumps pathway the peaking plants (H, or CH,) see low
utilisation
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Elec [10] Elec [0] Hybrid HP [10] Hybrid HP [0] H2 (ATR) [10] H2 (Elec.) [0]
SOURCES: Imperial College of London for UK Committee on Climate Change(2018)



Path forward: ‘no regrets’ can be pushed; pilots / trials & further study required to close
uncertainties; government decision to come in ~mid 2020s

Timing of key decisions and changes to deliver the net-zero scenarios for buildings Near-term activities

T » Studies and demonstration projects to

make the case for hydrogen, e.g.:

Low-regret actions i i
| I

i > - BEIS reports on H, value chain,

Substantial energy efficiency
improvements, low-carbon heat
(heat networks, off-grid heat pumps) | :

+

Previous decision / roll-out timeline Iis_ee right |

—

Decisions for on—-gas buildings on I 1
roles of hydrogen & electrification | L
l

e e o=

domestic conversion, etc.

. : - Hy4Heat: proving building
conversion (technical details,
safety, convenience)

- H21: quantified evidence for safe
transport of H2 in gas distribution;
technical design for converting

: north of England

Roll-out for on-gas buildings of
hydrogen and/or full heat pumps

OR

‘Hybrid first’ timeline

; | : : Gas distribution networks active

» Reports, trials and innovation to push
heat pumps and bioenergy, e.qg.:

- - BEIS reports: HP peak impact,

Roll-out of hybrid heat P RN LN e p Ny _ | |
nﬁ—gi? h{:xild‘f:?gs S PRI bl(_)denergy review, DSR in smart
! grids

Decisions on how to decarbonise
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Roll-out for on-gas buildings of :
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SOURCES: UK Committee on Climate Change ‘Net Zero’ Technical report; “previous decision / roll-out timeline” reflects the UK CCC’s 2016 recommendation



Imperial College for CCC (2018)

National Grid

New build

Existing buildings
off the gas grid

Existing buildings
on the gas grid

Low-carbon heat solution needed for on-gas
properties not on heat networks

Figure E. 1 Low-regrets measures and the remaining challenge for existing buildings on the gas grid’

SOURCE: Imperial College of London for UK Committee on Climate Change(2018)
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Imperial College for CCC (2018)
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Figure E. 2 Annual system cost of core decarbonisation pathways

SOURCE: Imperial College of London for UK Committee on Climate Change(2018) 15



Imperial College for CCC (2018)
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Figure E. 3 Optimal generation portfolio in the core decarbonisation pathways

SOURCE: Imperial College of London for UK Committee on Climate Change(2018) 16



Imperial College for CCC (2018)
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Figure E. 4 Cost changes in core decarbonisation pathways under different scenarios [30Mt]
National Grid SOURCE: Imperial College of London for UK Committee on Climate Change(2018) 17



Imperial College for CCC (2018)

National Grid

Annual system costs (Ebn/year)

160 - Hydrogen pathways

 C: Non-electric
heating

f |’

=
I
o

WO NG+HH2+CCS

120 Electric pathways
: Hybrid pathways
100 B C: HZ+CCE+P2G
80 | W C: Electric
. heating+storage
80
: W O: Electricity
40
Z B C: Electricity networl
20
Z B C: Electricity
\ _ o
o

N generation
S
q. \e\ & _ b@ o
¥ R (5} <3 @ oF N KQ 2 & G"‘“
& & &gx &8 & ] éﬁ ;;‘6‘ Total cost
fu O
q\-s."{\ i

Figure E. 6 Annual system cost of different decarbonisation pathways
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Toward a robust Northeast heat decarbonization strategy

Heat pumps, hybrid homes, biomass,
and hydrogen from electrolysis will all
play a part.

Sustained building energy efficiency
Investment is foundational.
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The Northeast decarbonization
strategy will find a balanced mix of
strategic electrification,
decarbonized gas, and energy
efficiency
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The Role of Renewable Natural Gas

Significant activity around North
America to decarbonize gas supply.

bp
€D
Utilities and third-party ecosystems Clean Energy

are developing new business 2017: BP acquires Clean Energy
models. Fuels for $155 million to become
the prime national supplier of
RNG.

Blend targets, carbon pricing and
low-carbon fuel standards are a
common denominator in major

markets.

—~———

SSSSS

A r'o'bust policy foundation erves 5018.19: RNG targots
model innovation in CA, NV, OR, CT
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RENEWABLE NATURAL GAS
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Collected

between Dominion and Smithfield
food — the largest RNG
partnership in history.



Conclusion: Focusing on What Matters in Heat Decarbonization

Technical: Ensuring reliability at each home and across the system

Social: Equity and affordability to ensure political support

Financial: Understanding public policy costs and integrating with carbon pricing
Innovation: Unique opportunity for Northeast to ‘stand out’ in the innovation landscape

Policy: Meaningful (i.e. larger than rooftop PV) incentives will be required across a
variety of sectors

Regulation: Performance-based regulation should be leveraged to incentivize utilities to
pursue decarbonization

Leveraging our leadership nationally: How can the Northeast region propel national
action well before 20307

National Grid 21



