

National Grid Your Partner in Energy Solutions

AEE Monthly Meeting November 1, 2017

Presented by: Fran Boucher | National Grid

Fred Green | Horticulture Consultant

Presenters

□ Fran Boucher

National Grid

□ Fred Green

Horticulture Consultant

The buzz about cannabis is not all about getting a

Sample uses:

- Neuropathy
- Migraine headaches
- · Pain relief

Psychoactive Effects?

- Cannabidiol (CBD) oil
- No Psychoactive high

The "common" understanding:

"no known adverse CBD oil side effects and it's shown to be well tolerated even at higher doses"

General Cannabis Info

Demand for Marijuana Infused Products (MIPs) Increasing Rapidly

- Market is 50% MIPs and growing
- Edibles: gum, cookies, candies, and lozenges.

Concentrated oils for vaping or cooking.

- Recreational: Maine and MA in 2018
- □Medical : RI , VT, MA, NY
- □ Projections for MA 2018 alone :
 - \$450 Million in sales
 - \$ 90 Million in tax revenue

Facilities Description

Space types:

What does a facility look like Greenhouse design

Project SIZE

Size varies by State

- ☐ States regulate the size (licenses)
- **□2,000** sf to 1.0 Million Sq. Ft. locally
 - Annual lighting 1.0 MM SF could be \$30 million!
 - Maybe \$60 million in product

The Energy Picture

□ Energy is the largest cost component of bringing product to market

Plant Science

GROW CYCLE

Seedlings

- Lights on 18 to 24 hrs./day
- 2 weeks or less

Vegetative

- Transitioned to full size pots and grow rooms
- Lights 18 hrs./ day
- 2 Weeks or less

Flowering

- Growing the buds
- Lighting 12 hrs./day
- 8 to 10 weeks

Plant Requirements

Requires TIGHT construction

Supplementary CO₂

- Increasing levels to +/-1300 ppm will speed growth and increase yields.
- Sources of supplemental CO₂ are:
 - High pressure bottled gas —
 - Open flame gas burners .
 - Purified machine exhaust –

national grid Environmental Parameters national grid

VARIES ALL OVER!!!

Lights On: 78*F +/-2*, RH 50-55% +/- 3% Higher

Lights Off: 68*F +/- 2*, RH <50% +/- 3% Lower

Other Design Factors

Moisture Removal Effectiveness

- The KEY component in the design of cultivation facilities.
- Mold and Mildew are the greatest threats to the crop.
- Disease prevalent when RH is high and air movement is poor: corners of rooms and around the base of mature plants.
- Prevention is best; applications of Hydrogen Peroxide can be helpful.

Moisture Removal Design

- Only use equipment <u>PROVEN</u> to work effectively at desired set points. Ask for documentation!
- Must install dedicated dehumidification system, not based on A/C operation.
- Incorporate a design buffer: performance at 65*F.
- Capacity to remove one day's irrigation volume within 24 hours.
- Traditional DX or refrigerant based dehumidifiers do not perform well at temperatures below 70*F and at RH below 60%.
- Outside air can be used for dehumidification during cold periods, but dilution of supplemental CO₂ will result.

national grid Economics of Cannabis Production

Typical Production Costs

- Traditional Indoor Facility: \$1000/lb.
- High Efficiency Indoor Facility: \$500/lb.
- Greenhouse Facility: \$250/lb.

Current Retail Price in MA per pound = \$4,000 to \$5,000.

Looking Forward

- Increased energy efficiency and labor efficiency to reduce COGS.
- Improved space utilization to maximize production.

Other Design Factors

Don't forget *cooling* from plants!

- The process of transpiration cools the air due to change in state of water from a liquid to a gas. (heat needed to evaporate liquid / water)
- 8,000 Btu's per gallon.

Odor Control

- Is that a skunk?
- Reek HVOC on neighborhood relations

Cost of Production per Pound

- COGS will be the prime focus as prices drop and margins shrink.
- COGS range from 10% to 25% of Revenues depending on efficiency of operation.

COGS Breakdown

Labor	35%
-------------------------	-----

• Energy 50%

Growing Supplies 15%

• CO₂ > 0.15%

Energy Efficient Design

Energy Profile

Energy use drivers

- 1. Lighting #1
- 2. Dehumidification
- 3. Cooling (heat from lights and dehumidifiers)
- 4. Reheat

Lighting Power

Office: 00.8 w/ sf

Flower room: 60.0 w/sf

Energy Profile

Potentially \$30 to \$50/ Sq. Ft. annually

Energy Profile –

Energy Intensity

- 1.Office 21 MJ/m^2/year
- 2.Inpatient healthcare 39 MJ/m^2/year
- 3. Cannabis cultivation 139 MJ/m^2/year
 - 1. Source: Evan Mills, Lawrence Berkley National Lab

3 x Hospital

Energy Profile

Greenhouses

- 1. Save up to 75% on energy use
- 2. Less control of product
- 3. Estimated 10% of New England market

State of Industry Standards

- Standards are still evolving
- Nothing specific in ASHRAE / IECC
- Lighting needs, irrigation, Temperature and Humidity, CO2
- No strong industry reference resources
 - High Times Magazine
 - Grower Blogs
 - Finding an "expert"

Horticulture Lighting Metrics, Standards & Opportunities

Lighting Energy Use Baseline Standard

High-Pressure Sodium (HPS) lights standard practice

Typically <u>16 S.F. per 1000 Watt HPS</u> (Flowering Stage)

"Lumens are for Humans"

PAR:

Wavelength plants love

Micromoles: Measures intensity

national**grid**

Description	Input Watts	PPFD per µmol/m²	Lamp Image
High Pressure Sodium -HPS	1080 W	700 to 800	
Double-Ended HPS	1080 W	800 to 1,000	
Ceramic Metal Halide - CMH	(2) 315 W 630 W	700 to 800	(m)
Plasma	(2) 270 W 540 W	400 to 600	
Light Emitting Diode - LED	600 W	700 to 900	38

Simple LED Case Study

5,000 Sq. Ft. flowering room:

Base:

(312) 1,000 watt HPS (1055 watts)

Proposed:

(312) 600 watt LED (630 watts)

Saved:

\$75,000 / year excluding HVAC savings

\$234,000 cost,
3 year payback (before utility incentive)

HVAC

1. Primary HVAC drivers (7 x 24, 365)

- Remove heat of lights
- Dehumidification load
- Reheat

MOLD DESTROYS CROPS!

95% plus of irrigation water requires dehumidification

HVAC a Mixed Bag

1. Common cooling systems

- Chillers
- Spit system
- VRF (variable refrigerant flow heat pumps)

2. Common dehumidification

- Desert Air (take off on Pool Pak units)
- Chilled water coils
- Heat recovery units (MSP)

The VRF Option

- 1. MA CEC grants (up to \$180,000!)
- 2. Favorable redundancy
- 3. A favorite on West Coast

Still need supplementary dehumidification

Cannabis specific equpment

Specialized EE solutions

1. MSP: heat exchanger

33 degree chilled water needs reheat

High End HVAC Systems \$\$\$

- Gas engine driven chillers
- GSHPs (deep well)
- Combined Heat and Power (absorption chillers)

HVAC Energy Efficiency

Potential HVAC measures

- 1. Desert air dehumidifiers
- 2. Gas engine chillers
- 3. MSP HVAC units
- 4. Economizers
- 5. Beyond code chillers
- 6. Condensing boilers

(may be base case!)

(a best practice)

(unique for cannabis)

(rarely seen)

The ultimate package????......

Utility Incentives

MA and RI and UNY Utility Incentives

All custom (MA, UNY and RI)

Yes lighting too!

MA and RI and UNY Utility Incentives

How much are the incentives?

- \$50k to over \$1.0 million
- Often short paybacks (under 2 yrs.)
- Combining LED and HVAC helps maximize incentives
- Top end incentives
 - LED lights
 - ☐ High end HVAC (CHP, Gas chiller)

Incentives

Measure list from an actual 45,000 sq ft facility

Table 0-1: Summary of ECMs

	Measure Analysis Method	Annual Savings		On	Demand Reduction		Increm.	Payback	
Description		Electric kWh	Gas therms	Cost \$	Peak %	Summer kW	Winter kW	Cost \$	Period Years
LED Grow-Lights	Custom	382,642	7,358	\$57,028	*	82.55	82.55	\$206,375	3.6
Exhaust Fans with EC Motors	Custom	1,251	0	\$163	100%	0.49	0.25	\$1,350	8.3
Gas-Driven Chiller with Heat Recovery	Custom	286,674	-18,199	\$19,251	50%	49.26	32.02	\$97,240	5.1
Condensing Boilers	Custom	0	1,565	\$1,549	-		-	\$20,018	12.9
VFDs on HWS Pumps and CW Pumps	Custom	16,114	0	\$2,095	57%	2.68	1.95	\$7,093	3.4
High Performance Lighting	Prescriptive	24,794	0	\$3,223	*	2.83	2.83	*	136
High Performance Site Lighting	Prescriptive	5,366	0	\$698	*	0.00	1.23	*	1.4

ual cost savings assume default utility rates of \$0.13/kWh and \$0.99/therm.

Approximately \$330,000 of incremental cost

Incentives could be upwards of \$200,000 for this from a MA utility

Incentives

Gas engine chillers project Local Example

- 200 Ton gas engine driven chiller
- 33 degree chilled water
- Compared to electric chiller
- Incremental cost \$98,000

0	Electric savings 290,000 kWh	\$39,150)
0	Gas use 19,000 Therms	<u>(\$20,900)</u>
0	Net	\$18,250

Thank you for participating today

Contact: Fran Boucher

National Grid

Francis.boucher@nationalgrid.com

781-907-1571

Gas engine chillers (Starting at 50 Tons air cooled)

Desert air dehumidifiers

Figure 1 - Lights ON Mode Dehumidification . Cooling and Air Movement

Lights on: Compressor heat can be discharged outdoors. (option)

Incentives

Standard low cost dehumidifiers

